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Abstract

The state of Florida, with access to abundant sunlight, is well
positioned to transition from fossil fuel dependency to solar en-
ergy.  Encouraging residential solar panel installations, particularly
in small cities like DeLand, is a crucial aspect of this transi-
tion. Light Detection and Ranging (LiDAR) surveys enable de-
tailed maps of residential neighborhoods, thereby permitting home-
owners to assess the feasibility of household rooftop solar, even
accounting for shading from nearby structures. Here, we lever-
age freely available LiDAR data to evaluate the potential for so-
lar rooftop installations on 996 households within a 1.52 km X
1.52 km area of DeLand. Our analysis reveals that approx-
imately 76% of these households can generate sufficient electric-
ity to meet the average annual demand of 19.2 MWh per home
in DeLand. Moreover, with Florida’s net metering system, sur-
plus electricity can be sold back to the state grid for cred-
its. Assuming a selling rate of 11 cents per kWh, our pro-
jections suggest potential yearly profits exceeding $1000 for about
53% of households in our study area. Our findings, there-
fore, underscore the significant potential for widespread adoption
of solar panels on residential properties in DelLand, highlight-
ing the economic and environmental benefits of such initiatives.
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1. Introduction

Climate change from anthropogenic greenhouse gas emissions poses
a significant challenge to the sustainability of the Earth’s diverse
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natural ecosystems.  Approximately 25% of annual greenhouse gas
emissions arises from fossil fuel combustion for electricity genera-
tion (Rolnick et al., 2019). Emissions reduction in the electric-

ity sector requires both a rapid phase-out of fossil fuels as well as
a swift integration of low-carbon sources, such as solar, wind, hy-
droelectric, and nuclear energy, into the power grid (IPCC, 2023).
To enable this transition, governments worldwide are offering sub-
sidies for investments in renewable energy, especially solar. For
instance, India, through the PM Surya Ghar Muft Bijli Yojana
scheme!, offers its citizens up to 78,000 in subsidy for rooftop
solar installation atop residential homes. Similarly, the United
States of America (US) incentivizes solar panel adoption through
federal tax credits® valued at 30% of the installation cost until
2033.

Florida, known as the “Sunshine State,” ranks as the third-
largest electricity consumer in the US, trailing behind Texas and
California. Despite receiving between 230 to 250 days of sun-
light annually, Florida falls short in generating adequate elec-
tricity to satisfy its energy needs. In January 2024, natu-
ral gas dominated the state’s energy production, contributing over
75%, while solar energy lagged behind at less than 6%.  More-
over, the majority of solar output comes from utility-scale facili-
ties with 1 MW power rating or higher. On the other hand,
over 50% of power consumption happens in the residential sec-
tor, where almost all homes rely on electricity for air condition-
ing throughout the year3. With the abundance of sunlight avail-
able in Florida, solar panel adoption atop residential homes ap-
peals as a sustainable solution to meet the state’s energy de-
mands.

Tax credits for rooftop photovoltaic adoption provide strong in-
centives for residential homeowners to switch to solar energy. How-
ever, many homeowners remain hesitant due to the initial high
costs of rooftop solar installations and concerns about shading
from nearby structures (e.g., buildings and trees).  High-resolution
maps of residential neighborhoods are therefore necessary to en-
able cost-benefit analyses of solar installations on a per-house ba-
sis.

Light Detection and Ranging (LiDAR) is a remote sensing tech-
nique that uses laser light to measure distances and create de-
tailed 3D maps of the environment. LiDAR finds application in
a variety of domains, including surveying (e.g., Carter et al. 2001;
Micheletto et al. 2023), autonomous vehicles (e.g., Thakker et al.
2019; Srivastav & Mandal 2023), wurban planning (e.g., Muhadi
et al. 2020; Uciechowska-Grakowicz et al. 2023), forestry (e.g., Das-
sot et al. 2011; Alvites et al. 2022), and environmental monitor-

"https://pmsuryaghar.gov.in

Zhttps://www.energy.gov/eere/solar /homeowners-guide-federal-tax-credit-solar-photovoltaics
3Florida energy usage statistics: https://www.eia.gov/state/analysis.php?sid=FL.
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ing (e.g., Haugerud et al. 2003; Wang et al. 2023). In this
study, we leveraged freely available LiDAR data to conduct a house-
by-house assessment of the potential for rooftop solar installations
in a 152 km x 152 km residential neighborhood of DeLand,
Florida.

We detail our study region and sources of raw data in Section 2. Sec-
tion 3 describes our data processing methodology to compute the expected
annual solar energy output on a per-house basis. In Section 4, we present
the results from our data analysis and share insights gleaned from our study.
Finally, we summarize and conclude our investigation in Section 5.

2. Study Region and Data Sources

DeLand is a small residential city in central Florida with an esti-
mated population? of 41,263 in 2023. Located approximately 55 km
north of Orlando and about 37 km west of Daytona Beach, De-
Land offers its residents a rural feel with close access to sprawl-
ing business districts. Family establishments comprise over 60% of
households in DeLand, with most of them being owner-occupied®.
On average, residents in DelLand consume about 19.2 MWh of en-
ergy per year, and pay approximately $3,612 in annual electricity
bills®.  This expense is roughly 66% higher than the US-averaged
annual electricity bill of $2,179 per household. With the im-
mense scope for solar energy in Florida, DeLand’s residential land-
scape dominated by owner-occupied family homes presents a viable
setting for a pilot study to assess house-wise rooftop solar poten-
tial.

The US 3D Elevation Program (3DEP: Sugarbaker et al. 2014),
managed by the US Geological Survey (USGS), is an initiative
to establish a comprehensive national baseline of consistent, high-
resolution topographic elevation data. Launched in 2016, 3DEP
data products are available free of charge to the public, includ-
ing LiDAR point cloud data and digital elevation models (DEMs).
For this study, we downloaded LiDAR point cloud data’ gath-
ered in 2019 for a 1.52 km x 1.52 km neighborhood of DeLand,
Florida.  Our LiDAR data come georeferenced in the NAD 1983
UTM Zone 17N coordinate frame with a point spacing of ~ 19.2 cm.
Figure 1 shows satellite imagery of the area spanned by our Li-
DAR data, revealing a residential setting with plenty of tree
cover.

Microsoft has publicly released a dataset of 129,591,852 US build-
ing footprints® generated by applying computer vision models on

“https://www.deland.org/206 /DeLand-Demographics

https://www.point2homes.com/US/Neighborhood /FL/DeLand- Demographics.html

Shttps://www.energysage.com/local-data/electricity-cost /fl /volusia-county /deland

"LiDAR  data download link: https://rockyweb.usgs.gov/vdelivery /Datasets/Staged /Elevation/LPC/Projects/
FL_Peninsular_2018_D18/FL_Peninsular_Volusia_2018 /LAZ/USGS_LPC_FL_Peninsular_2018_D18_1L.ID2019_247579_E.laz

8https://github.com/Microsoft /USBuildingFootprints



https://www.deland.org/206/DeLand-Demographics
https://www.point2homes.com/US/Neighborhood/FL/DeLand-Demographics.html
https://www.energysage.com/local-data/electricity-cost/fl/volusia-county/deland
https://rockyweb.usgs.gov/vdelivery/Datasets/Staged/Elevation/LPC/Projects/FL_Peninsular_2018_D18/FL_Peninsular_Volusia_2018/LAZ/USGS_LPC_FL_Peninsular_2018_D18_LID2019_247579_E.laz
https://rockyweb.usgs.gov/vdelivery/Datasets/Staged/Elevation/LPC/Projects/FL_Peninsular_2018_D18/FL_Peninsular_Volusia_2018/LAZ/USGS_LPC_FL_Peninsular_2018_D18_LID2019_247579_E.laz
https://github.com/Microsoft/USBuildingFootprints

A. Suresh

Figure 1: Study region spanning a 1.52 km x 1.52 km residential neighborhood of DeLand, Florida. Light
blue outlines demarcate building footprints identified by Microsoft using computer vision models applied to
Bing satellite imagery. Figure prepared using ArcGIS Pro 3.0.

Bing satellite imagery from 2012-2020. The performance of such
models can be summarized using three metrics, namely the re-
call, the false positive rate, and the Intersection-over-Union (IoU).
The recall, also called the true positive rate, measures the pro-
portion of buildings that have been correctly detected. Mean-
while, the false positive rate quantifies the fraction of background
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Figure 2: Histogram of footprint areas of the 996 buildings detected by Microsoft in our study region. The
vertical dotted black line labels the median building footprint area of ~ 169 m?2.

image pixels that have been incorrectly classified as being part of

a building. Finally, the IoU captures the fractional spatial over-
lap between the detected building polygons and their correspond-
ing ground truth extents. Microsoft, for their building foot-

print detection task, reported good model performance with a re-
call of 92%, a false positive rate of < 1%, and an IoU of
86%.

For this study, we downloaded the Microsoft-generated shapefile of
building outlines for the state of Florida and subsequently clipped the
shapefile to the spatial extent of our LiDAR point cloud data. This clip-
ping operation was performed using the Clip (Analysis) tool of ArcGIS
Pro 3.0 (Environmental Systems Research Institute, Inc., 2022). Further,
Microsoft specifies building outlines in the WGS 1984 coordinate refer-
ence frame. We used the Project (Data Management) routine of ArcGIS
Pro 3.0 to transform these coordinates to the NAD 1983 UTM Zone 17N
frame of our LiDAR data. Finally, we computed the footprint area enclosed
by every building in our clipped shapefile.

Figure 2 presents a histogram of footprint areas of the 996 buildings
detected by Microsoft in our study region. Our study region evidently
encompasses four orders of magnitude in building footprint size, with a
median footprint area of ~ 169 m?.
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Table 1: LiDAR class codes and data coverage

Class code

Surface category No. of data points

Percentage data coverage (%)

1 Unclassified 36,349,581 57.7 %

2 Ground 22,270,867 35.4 %

6 Buildings 4,194,020 6.7 %

7 Low point (noise) 150,915 0.2 %

18 High noise 2 ~3x107% %
All 62,965,385 100 %

Table 2: Statistics of laser returns in our LiDAR point cloud data

Return category Point count

Percentage data coverage (%)

First 52,075,709 82.7 %
Second 9,256,230 14.7 %
Third 1,345,366 2.1 %
Fourth 255,278 0.4 %

Fifth 30,592 ~5x1072 %

Sixth 2,138 ~3x1072 %

Seventh 71 ~107* %

Eighth 1 ~2x107% %
Last 51,846,015 82.3 %
Single 42,598,031 67.7 %
First of many 9,477,678 15.1 %
Last of many 9,247,984 14.7 %
All 62,965,385 100 %

3. Data Analysis Methodology

3.1. Generation of Topographic Maps from LiDAR Data

LiDAR data points are assigned numerical class codes to classify between
different types of objects or surfaces encountered. In addition, each individ-
ual laser pulse may yield one or more returns based on the incident surface
texture. Tables 1 and 2 provide statistics of various class codes and laser
return categories seen in our LiDAR point cloud data.

A DEM measures the elevation of the bare Earth surface relative to
mean sea level. DEMs exclude surface objects such as buildings, vegetation,
or infrastructure, from their representations. On the other hand, a digital
surface model (DSM) captures the Earth’s surface as seen from overhead
imagery.

Grouping all returns from ground points (class code 2), we built a DEM
of our study region using the LAS Dataset to Raster (Conversion) tool
of ArcGIS Pro 3.0. Similarly, we constructed a DSM using LiDAR, data
points with the return categories “First” and “First of many.” Figure 3
shows our DEM (left) and DSM (right), both of which share a common pixel

resolution of &~ 76 cm. We compare our DEM against that publicly released
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Figure 3: DEM (left) and DSM (right) generated from LiDAR point cloud data of our study region.
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Figure 4: DSM with hillshade raster function applied to reveal structures, including sloped roofs, pavements,
and trees. A solar altitude of 45° and a solar azimuth of 315° was assumed for deriving the hillshade effect
with ArcGIS Pro 3.0.
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by USGS? and obtain a 99.9% match at the pixel level. In Figure 4, we
apply a hillshade raster function to reveal structures in our DSM, including
sloped rooftops, pavements, and trees. This hillshade effect was computed
in ArcGIS Pro 3.0 assuming a solar altitude of 45° and a solar azimuth of

315°.

3.2. Calculation of Pixel-level Solar Insolation

The top of the Earth’s atmosphere receives an instantaneous solar ra-
diation flux of ~ 1361 W/m?. As this incoming light encounters
dust, air molecules, and clouds in the Earth’s atmosphere, it gets ab-
sorbed and scattered, leading to a reduction in its intensity. In gen-
eral, the Earth’s atmosphere transmits between 30-70 % of the in-
coming solar energy to the surface (Srivastava et al., 2021). How-
ever, not all the transmitted power gets captured by solar pan-
els.

During daytime, sunlight can reach a solar panel in three dif-
ferent ways. First, rays of sunlight may directly arrive at a
panel unobstructed.  Second, a panel may receive diffuse sunlight
that has been scattered by clouds and dust in the FEarth’s at-
mosphere. Third, a panel may receive radiation reflected from
the ground. Among these three means of energy reception,
the last mode is generally negligible for sky-directed monofacial
rooftop panels. Hence, we consider only the first two en-
ergy reception pathways in our assessment of rooftop solar poten-
tial.

Two critical parameters governing solar panel output are the
panel tilt, fpy € [0°, 90°], and orientation, ¢py € [0°, 360°).
The panel tilt is the angle between the solar panel surface and

the ground plane. Meanwhile, the panel orientation is an az-
imuthal angle in the ground plane measured counterclockwise (north
to east) relative to true north at ¢py = 0°. The orien-

tation, therefore, labels the direction in which the solar panel
faces.

In our study, we assume that all solar panels are fixed installa-
tions with tilts and orientations following the that of their underly-
ing rooftops. A general rule of thumb for maximizing power gen-
eration with such space-fixed solar panels is to install panels facing
south in the northern hemisphere and north in the southern hemi-
sphere. However, at sufficiently low latitudes, alternate panel orienta-
tions may also deliver substantial power for household electricity consump-
tion.

The solar insolation of a surface in time 7' is defined as the cumula-
tive solar energy received per unit area normal to the surface. Measured
in kWh/m?, the pixel-level solar insolation can be calculated for homes in

9USGS-supplied DEM: https://rockyweb.usgs.gov/vdelivery /Datasets/Staged /Elevation/ OPR/Projects/FL_Peninsular_
2018_D18/FL_Peninsular_Volusia_2018/TIFF /USGS_OPR _FL_Peninsular_2018_D18_ DEM247579.tif
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Figure 5: A map of pixel-level solar insolation estimates. Left insets show zoomed-in views of the right
panel for two specific localities. The top left inset demonstrates solar insolation values for a single home
surrounded by trees. Evidently, solar insolation values are lower at roof bottoms due to shading from
adjacent trees. The bottom left inset shows a collection of homes, where shade from tree cover significantly
diminishes solar insolation near the edges of various building rooftops.

our study region using the Area Solar Radiation (Spatial Analyst)
method of ArcGIS Pro 3.0. This functionality evaluates the net solar in-
solation per pixel of a DSM by considering the surface slope, the surface
aspect, and the sky positions of the Sun at multiple times throughout a
day and on multiple days throughout a year.

Section 4.1 presents our pixel-level solar insolation raster prepared with
the Area Solar Radiation (Spatial Analyst) routine. For our analy-
sis, we assumed T = 1 year (2024) and evaluated sky positions of the Sun
once every 30 minutes for one day per two weeks of the year. Further, we
applied the standard overcast sky model in ArcGIS Pro 3.0, with a pre-
sumed atmospheric transmissivity of 50% and a diffuse proportion of 30%.
The diffuse proportion captures the fraction of global normal radiation flux
that is in the diffuse or scattered component of the radiation incident on a
solar panel.

3.3. Computation of Household Solar Energy Production

With access to our shapefile of building footprints and pixel-level solar
insolation values, we derived estimates of the household solar energy pro-
duction, F, as follows.

E = €Y (Footprint Area) (Footprint-averaged solar insolation) . (1)
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Figure 6: Variation of solar insolation with rooftop orientation (surface aspect) for the household shown in
the top left panel of Figure 5. Aspect values of 0°, 90°, 180°, and 270° represent north, east, south, and
west respectively. The solid black curve is a quartic polynomial fitted to the dark blue scatter points.

Here, € and T are the efficiency and performance ratio of the solar panel
respectively. The solar panel efficiency measures the fraction of incoming
solar energy converted into electricity. Meanwhile, the performance ratio
quantifies the proportion of generated electrical energy that is preserved
through the panel installation. For our study, we assume € = 22%'0 and
T = 80%"!, which are representative values for commercially manufactured
solar panels in 2024.

4. Results and Discussion

4.1. Trends in Pixel-level Solar Insolation

Figure 5 displays solar insolation estimates for buildings in our study area,
revealing shading effects from nearby trees. South-facing rooftops receive
the highest insolation, especially evident from pixels with > 1000 kWh/m?
insolation. Figure 6 highlights this trend, using the building in the top left
inset of Figure 5 as an example.

4.2. Evaluation of House-wise Rooftop Solar Potential

Figure 7 illustrates a web map'? screenshot showcasing solar energy pro-
duction estimates for homes in our study region during the year 2024. We
deduce that roughly 76% of homes can generate sufficient solar energy to

https://www.energysage.com/solar /what-are-the-most-efficient-solar- panels-on-the-market /
Hhttps://www.energy.gov /sites/default /files /2022-02 /understanding-solar- photo-voltaic-system- performance.pdf
12Web map URL: https://arcg.is/19eKXP0
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Figure 7: Screenshot of a web map illustrating household-level solar energy production estimates (FE) for
2024. Households shaded in green have E values exceeding the DeLand average of 19.2 MWh per home.
Darker shades of green correspond to higher values of E. Buildings labeled in red have £ < 19.2 MWh.
In this study, we presumed a constant annual energy demand of 19.2 MWh for all buildings irrespective of
home area. Credits from sale of surplus generated solar power to the state grid are computed assuming a
selling rate of 11 cents per kWh. Web map hosted on ArcGIS Online.

meet the average annual demand of 19.2 MWh per household in DeLand.
Additionally, Florida’s net metering system allows households to earn cred-
its for supplying surplus generated electricity to the state power grid. Based
on a selling rate of 11 cents per kWh (2017 data'®), about 53% of house-
holds stand to receive over $1000 in potential credits. Here, we assume that
households of all sizes share a common annual energy demand of 19.2 MWh.

Figure 8 shows the marginal distribution of household solar energy pro-
duction as a function of building footprint area. Fitting a power-law model,
we infer that an annual energy requirement of 19.2 MWh warrants a min-
imum home area of ~ 108 m?.

4.3. Areas for Improvement

We encourage exploring potential enhancements in our presented con-
clusions, particularly by relaxing several simplifying assumptions made
throughout our study. For example, our calculation of pixel-level solar inso-
lation can benefit from incorporation of historical climate data and detailed
cloud cover assessments using satellite imagery and numerical weather pre-
diction models. Additionally, when evaluating credits earned by households

Bhttps://www.energysage.com/local-data/net-metering/fpl/
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Figure 8: Distribution of household solar energy production as a function of home area after marginaliza-
tion over building-averaged solar insolation. Generation of the DelLand average annual energy demand of
19.2 MWh per household requires a minimum home area of ~ 108 m?.

selling excess solar energy to the state grid, considering variable energy re-
quirements based on home sizes, occupancy, and appliance usage patterns
could offer a more accurate representation of reality. Ultimately, address-
ing limitations on solar energy production imposed by regulations governing
the installation capacities of solar cells on residential properties of differ-
ent sizes is crucial for building a comprehensive assessment of rooftop solar
potential.

5. Summary and Conclusion

Solar energy offers a viable alternative to fossil fuel combustion in
the quest to minimize global greenhouse gas emissions from the power
generation industry. Florida, with access to an abundance of sun-
light, is favorably positioned to lead this transition. A key el-
ement to embracing solar energy is providing residential homeown-
ers in small cities with accurate assessments of the profitability of
household rooftop solar installations, accounting for shading from
nearby structures. High-resolution maps of residential neighborhoods
gathered with remote sensing techniques such as LiDAR are there-
fore essential to conduct plausibility studies for rooftop solar poten-
tial.

Here, we leveraged freely available LiDAR data to evaluate rooftop
solar potential for 996 households in a 1.52 km x 1.52 km study re-
gion. OQur study area is based in DeLand, a small residential city in
Central Florida with a mean yearly household energy consumption of
19.2 MWh. In the absence of granular knowledge of the annual elec-

12
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tricity consumption for each building, we assume every household in our
study to uniformly require the mean energy demand of 19.2 MWh per
year.

Our investigation builds upon two data sources — LiDAR data
from the 3DEP program, and a shapefile of US building footprints pro-
duced by Microsoft using artificial intelligence. Using these data in-
puts, we constructed two output products — a raster map of pixel-
level solar insolation per building for the year 2024 and a web
map of annual household solar energy production estimates. We es-
timate that 757 households (=~ 76% of homes) in our study re-
gion receive adequate solar exposure to meet the annual average de-
mand of 19.2 MWh per home. Further, production of at least
19.2 MWh of solar energy necessitates a minimum home area of
~ 108 m?.

Florida has an active net metering system that pays residents for selling
excess generated solar energy to the state power grid. Assuming a selling
rate of 11 cents per kWh, 529 buildings (= 53% of homes) in our study area
stand to generate annual profits exceeding $1000, thereby, highlighting the
economic potential for widespread rooftop solar adoption in DeLand.
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